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Abstract

We review a general effective field theory (EFT) that maps to K-essence and other dark energy theories. We
find the mapping of K-essence to the general EFT, and take the quintessence limit of the resultant Lagrangian.
We then choose a φ4 potential so that we can review the Weinberg-Coleman potential, vacuum decay and
discuss it in light of the preceding.

1 Introduction

One of the most pressing issues about the standard
model of particle physics today is its inability to ac-
count for some of the observations made at cosmo-
logical scales. According to them, granted the stan-
dard cosmological model, the universe’s energy budget
comes largely from a dark sector, so far eluding any-
thing but a phenomenological description: dark mat-
ter and dark energy. The former has seen a success-
ful description in terms of a cold, collisionless fluid,
though with some remaining observational tensions,
whereas the latter typically has been explained as a
cosmological constant entering at the level of the La-
grangian, providing an accelerated expansion of space
at late times. Although this constant is an allowed
term of the symmetries of general relativity, there
is some difficulty in explaining its observationally in-
ferred value as a quantum field theoretical evaluation
of the vacuum energy contribution from the matter
fields would have it 120 orders of magnitude larger
(the fine-tuning problem). It is also puzzling why we
find ourselves at a time where this term very recently
(cosmologically speaking) has become dominant on
the expansion of the universe (the coincidence prob-
lem). The lack of a theoretically compelling expla-
nation for the manner of the late-time acceleration,
our hitherto only motivation for it coming from ob-
servations on large scales and finally some recent ten-
sions with observational data under the cosmological
constant framework, has led some to consider actions
where this effect arise dynamically from matter fields
or from extra gravitational degrees of freedom instead.

One example of a class of theories attempting to ac-
count for the effect of dark energy by adding a scalar
degree of freedom is K-essence [1], building on the
more explored quintessence field which uses a similar
mechanism to the inflaton field in a slow-roll poten-
tial for achieving the negative pressure equation of
state for the resultant cosmological fluid. K-essence

achieves the dark energy behaviour through the in-
sertion of a non-trivial kinetic term for the scalar de-
gree of freedom and shows some promise in account-
ing for both the fine-tuning and coincidence prob-
lem, although the latter has been claimed to be on
the expense of causality [2, 4]. K-essence extends the
Einstein-Hilbert action of general relativity to

S =

∫
d4x

√
−g

{
g(φ)M2

plR/2 + P (φ,X)
}

(1)

+ Sm(gµν),

where1 g is some general function of φ, P some func-
tion of X = gµν∂µφ∂νφ that makes up the non-linear
kinetic terms and Sm is the standard matter action,
coupled to only the metric.

1.1 Effective Field Theories
In general, an effective action can be expressed intu-
itively in the path integral formalism as

eiΓEFT =

∫ ∏
j

Dφje
iSUV ({φi}), (2)

where the j index can span a subset or all of the φi

fields, and φ are meant to represent all scalar, spinor,
vector and tensor fields. We say that we are ‘inte-
grating out’ the φj degrees of freedom, and in the
event where j spans all the fields, we are left with the
1-part-irreducible (1PI) effective action, which would
include all quantum loop-corrections, even though we
only evaluate it at tree-level.

The effective action would in general contain an
infinite series of non-renormalisable operators whose
(Wilson) coefficients would contain information about
the integrated-out degrees of freedom and would have

1It can be shown in starting out in the Einstein frame that g
is unity in K-essence models, even in the Jordan frame. The two
frames should be equivalent up to a conformal transformation
of the metric.
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to be fixed by observations in a bottom-up construc-
tion (explained below). Yet, when there is a clear
scale hierarchy between the integrated out (heavy)
and remaining (light) degrees of freedom, a dimen-
sional analysis (power counting) will show a suppres-
sion of higher dimensional operators and only give a
finite amount of non-renormalisable operators to fix
to observations at a given precision, and thus a pre-
dictive, and often very useful, effective theory. One
would typically then simply neglect all on-shell exci-
tations of the heavy particles as the energy available
in the kinematics one is considering is not sufficient
to excite them. The only trace left of the heavy de-
grees of freedom are then parametrising their off-shell
excitations in internal graphs for external light states.

In the following, what is relevant is a slight modifi-
cation of the above picture, known as the background
field method. Instead of integrating out a heavy par-
ticle, one splits ones extra degree of freedom into a
dynamical part δφ and a classical background field φb,
so that φ = φb+ δφ. One thinks of the non-dynamical
field as an external classical field that does not con-
tribute to internal loops (i.e. only exists on-shell). In-
stead of integrating over it in the path-integral, one
inserts its tree-level expectation value. δφ is the quan-
tum fluctuations about the background – it only exists
off-shell and will be what one integrates over. The re-
sultant effective action is 1P1 since one has integrated
out all the fluctuations, yet one still has external clas-
sical states that are evaluated at tree-level.

At first we will find, as in the literature presented
here, a classical EFT where we split the scalar into
its spatial average φ̄(t) and deviations from this value
φ− φ̄ ≡ π. This picture is different since π now has a
classical part and exists in on-shell external states. We
will neither find the 1P1 action, where the fluctuating
part of this field is exactly accounted for in tree-level
diagrams, as we wish to be agnostic about the UV-
completion of our low-energy theory. Rather, we will
approximate it by constructing a general parametri-
sation of actions up to some order in the smallness
parameter ε ∼ π. This means that deviations from
the spatial mean is taken to be small. In the liter-
ature, π is taken to follow the tree-level equations of
motion and is therefore treated classically, which prob-
ably is a good approximation at cosmological scales.
Still, as an exercise, we will consider it a quantum field
in a λ4 potential and consider corrections at the end.
K-essence/quintessence has been applied to quantum
cosmology [5, 6] which motivates this consideration.
Some K-essence actions can find their UV-completion
in string theory, like Dirac-Born-Infeld-like velocity
potentials [6].

2 Deriving the EFT
We wish to parametrise the low-energy K-essence
class of theories by adding to the Einstein-Hilbert La-
grangian all possible terms consistent with the man-
ifest symmetries of the class of theories up to some
order O(ε) ∼ O(π) (bottom-up construction). This is
a rather extensive task, so we will review the method
without going through the entire derivation. A clever
trick to get rid of some redundant terms is to first
spontaneously break the time-diffeomorphism invari-
ance of GRs full diffeomorphism invariance, add all
possible terms consistent with the remaining man-
ifest symmetries, and then ‘unbreak’ it using the
Stückelberg trick [7, 8, 4]. This utilises the fact
that our apparent background cosmological GR solu-
tion, the FLRW metric, does not have manifest time-
translation invariance. The proceding follows a close
analogy to the spontaneous symmetry breaking in the
Higgs mechanism, which we will come back to later.

We consider that we have some general scalar field
that is monotonic in time, allowing us to choose our
time-coordinate so that φ(xµ, t) inverts to t(xµ, φ) and
we make the gauge choice so that π = 0 for each spa-
tial hypersurface (the ADM 3+1 formalism [10] is an
intuitive choice here). This is called the unitary gauge
in analogy to the Higgs mechanism. φ − φ̄ ≡ π is
our Goldstone boson, and we are spontaneously break-
ing the time translation symmetry. The background
field φ̄ is simply a function of time, and the scalar
degree of freedom is ‘eaten’ by the metric. We can
then easily extend the action in unitary gauge by in-
cluding higher order terms in the metric, constrained
by the manifest symmetries of K-essence, which we
identify here to be spatial diffeomorphism invariance
and parity. We will attenuate the terms by assum-
ing that all the overdensities are small on our scales,
on order of a weak-potential smallness parameter2

ε2 ∼ (δgtt)
2 ∼ δg

3/2
ti ∼ δgij .

Looking at tree-level equations of motion, one finds
that spatial derivatives are O(ε−1/2), and so, with 2nd
order equations of motion, one needs to include ε2

terms in the Lagrangian to be consistently at O(ε)
[7, 12]. Then, adding all possible terms in the unitary
gauge, up to 2nd order (expanded around an FLRW
background), one finds, using −+++ convention,

L = M2
plf(t)R/2− Λ(t) + c(t)g00 (3)

+M4
2 (t)(δg

00)2/2.

There are more terms listed in [8], but we find them
to be zero for K-essence, and so leave them out for
brevity.

2We need to restrict ourselves to gauges where this remains
satisfied. It is assumed here to be so for there unitary gauge.
The scalings are for non-relativistc matter, and are found using
the spacetime interval and the virial theorem.
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After this one undoes the unitary gauge using the
Stückelberg trick that is a transformation t → t̄(t) =
t+ π, and gets the result of [7]. We first need to find
how g00 transforms, and see

g00 → ∂t̄

∂xµ

∂t̄

∂xν
gµν , (4)

which is easily solvable, and leads us to

L =
M2

pl

2
R− Λ(t̄ ) (5)

− c(t̄ ){ g00 + 2g0µ∂µπ + gµν∂µπ∂νπ}

+
M4

2 (t)

2

(
δg00 + 2g0µ∂µπ + gµν∂µπ∂νπ

)2
,

where dot is with respect to cosmic time and a is
the background scale factor. Note that we have
counted spatial derivatives O(ε−1/2). The EFT func-
tions f,Λ, c being functions of t̄, they will have to be
Taylor expanded in the scalar later. At this point one
can find the EFT functions explicitly in terms of our
K-essence model above using the mapping equations
of [8] or a top-down matching procedure. One should
then find the EFT functions of [9] (for φ = t)

f(t) = g(φ̄(t)) = 1, (6)

c(t) = ˙̄φ2P ′, (7)
Λ(t) = c− P̄ , (8)

M4
2 (t) =

˙̄φ4P ′′ (9)

where P ′ means differentiated with respect to X,
which is the only dependency of P on the ADM vari-
ables of [8]. We evaluate the rest of the EFT functions
to be zero, as expected.

After using the Stückelberg trick we should suppos-
edly have reclaimed the completely covariant action,
up to the order that we extended the action in the
unitary gauge, yet looking at equation (5) manifest
covariance seems to be broken by the EFT-functions,
the metric and the derivatives. This is because of
our splitting of π and φ, and also that we have lim-
ited ourselves to gauges where the perturbations of the
metric remain small and the relative order of spatial
and temporal derivatives is maintained. We assume
that within this residual gauge, we can set the O(ε2)
conformal Newtonian gauge,

ds2 = −(1 + 2Ψ + 2Ψ2)dt2 (10)
+ a2δij(1− 2Φ + 2Φ2)dxidxj ,

which is an approximation of the Poisson gauge3. We

3A more rigorous approach might show that consistency
would require that we include vector and tensor perturbations
O(ε2). They are expected to be irrelevant for ΛCDM . We
ignore them for simplicity. They are included in [7].

then find the O(ε2) Ricci tensor

R = 6
(
2H2 + Ḣ

)
(1 + 2Ψ̃)− 2

a2
Ψ̃,ii (11)

+ 6Φ̃,00 − 6H(Ψ̃,0 − 4Φ̃,0)−
4

a2
Φ̃,ii,

where we have chosen Ψ̃ = Ψ + Ψ2 and Φ̃ = Φ − Φ2.
We finally get

L =
M2

pl

2
R− Λ(t)− πΛ̇(t) (12)

− {c(t) + πċ} {2Ψ− 1 + 2π̇ + δij∂iπ∂jπ/a
2}

− c(t)
{
2Ψ(Ψ + π̇) + 2Φδij∂iπ∂jπ/a

2 − π̇2
}

+
M4

2 (t)

2

{
2(Ψ− π̇) + δij∂iπ∂jπ/a

2
}2

,

which is our effective action.

3 The Coleman-Weinberg Po-
tential

We will now consider the more explored subcategory
of K-essence, ‘quintessence’. During inflation, quan-
tum dynamics are expected to become influential on
cosmology, but there are no obvious reasons to con-
sider quantum effects in dynamics occurring at cos-
mological scales in the late-time universe. However
in some cases one can constrain parameter spaces by
the study of instabilities under quantum corrections.
Apart from this false vacuums and domain walls have
been studied in the literature. The Higgs field is the
only scalar field that we know of in nature, and there
are some interesting things to say about its vacuum
expectation value, and whether it is at a global or
local minimum. In the latter case it could relax to a
lower energy vacuum some time in the future. We will
first show that the Higgs potential can be studied as a
special case of our K-essence EFT, and then study the
Coleman-Weinberg potential, which looks at quantum
corrections to the φ4 potential

We note that although all fields involved are
scalar, both the gravitational scalars are dimension-
less whereas π ∼ t, which is the inverse of what we
find canonically. To return π and Φ,Ψ to scalar di-
mension ∼ M , we redefine their fields

Mpl =

√
~c
GN

⇔ GN =
~c
M2

pl

≡ 1

M2
pl

, (13)

π → G̃π, (Φ,Ψ) →
√
GN (Φ,Ψ). (14)

For convenience GN ≡ G in the following. We pick
G̃ = 1/M2

π to represent some scale associated with
K-essence.

For a superficial inspection of equation (12), let us
consider the quintessence scenario. Then P ′′ = 0,
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M4
2 = ċ = 0 and c = G̃−2, which can be seen by

rescaling φ̄ = t before changing to scalar dimension.
Furthermore, assuming a universe without anisotropic
stress so that Ψ = Φ, the part of the Lagrangian in π
is

L ⊃ π2π − G̃ πΛ̇(t)− 2M2
π(1 +

√
GΨ) π̇

− 2
√
GΨ ∂iπ∂

iπ − V (π, t), (15)

where 2 ≡ ηµν∂
ν∂µ. This is simply the Klein-Gordon

equation to first order in the gravitational potential
(remember we counted ∂i = O(ε−1/2), ∂t ∼ O(1)).
We also get two tadpoles that would have no effect
on a 1P1 action, since they cannot participate in any
1P1 diagrams. This reflects the fact that minimally
coupled quintessence simply is an additional matter
field.

The choice of quintessence has forced us to pick
P (φ,X) = −V (φ). We will in the following work in
Minkowski background. Motivated by the Higgs par-
ticle, let us choose the widely studied φ4 potential

V (π) = m2
0π

2 +
λ

4!
π4. (16)

Now, following [14, 15], we can study the interest-
ing prospect of whether the manifest Z2 symmetry is
spontaneously broken, as would be the case in a non-
zero vacuum. Because normal π’s will be involved, we
will refer to the the numeric πn = 3.14 . . . Using the
proper background field method, unlike what we did
in the beginning, we separate π = πb + ξ, where πb is
a classical external field, while ξ contains all quantum
fluctuations. We then find

V (πb + ξ) = m2
0(π

2
b + 2πbξ + ξ2) (17)

+
λ

4!

(
π4
b + 4π3

b ξ + 6π2
b ξ

2 + 4πbξ
3 + ξ4

)
.

We can drop the ξ tadpoles. We will also drop the
ξ3, ξ4 terms, as we assume ξ � π. Then, defining
V2(ξ) = f(πb)ξ

2 and f(πb) = m2
0 + λπ2

b/2 we have

eiΓ[πb] = exp

(
i

∫
1

2
πb2πb − V (πb)

)
(18)

×
∫

Dξ exp

[
i

∫
d4x

(
1

2
ξ2ξ − V2(ξ)

)]
.

The path integrand is a Gaussian. This is helpful,
because we can use the formula∫

Dφ exp (−φAφ) =
√
2πn detA−1. (19)

Taking the logarithm of both sides of (18) helps us
to simplify further (looking only at the path-integral
part, disregarding a constant)

i∆Γ[φb] ∝ −1

2
tr ln (−2+ f(πb)) , (20)

where we have used the relation ln detA−1 =
−tr(lnA). The states |X〉, X ∈ {x, p} form com-
plete sets of momentum and position states, so we can
use their completeness relations 1 =

∫
d4X |X〉 〈X| =

1
∫
d4X 〈X|X〉, to first express the trace

i∆Γ[φb] ∝ −1

2

∫
d4x 〈x| ln

(
1 +

f(πb)

2

)
|x〉 , (21)

where one has pulled out a term ln2 that is indepen-
dent of φb. At this point [14] assumes f(πb) = m2

eff =
const since this otherwise would make a difficult cal-
culation. We are bound to do the same, but will mo-
tivate it assuming that the scales that ξ and πb evolve
on are widely separated. Then we can insert the com-
pleteness relation for momentum states anywhere we
want within the braket, and not have to worry about
their operation on f(φb), so that

i∆Γb ∝ −1

2

∫
d4x

∫
d4p

(2π4)
ln

(
1−

m2
eff

p2 + iε

)
, (22)

where we define ∂2
πV = m2

eff = m2 = ∆ for conve-
nience. Looking at the superficial degree of divergence
of the momentum integral, we can immediately tell
that it is UV-divergent. The IR divergence is can-
celled by the p2 from the integral. Although [14] uses
a momentum cutoff regulator, we will use dimensional
regularisation and compare. The integral can be put
into a more familar form with the derivative method
(ε ≡ 4−d

2 )

I =

∫
ddp

(2πn)d
ln

(
1− ∆

p2

)
, (23)

d2I

d∆2
=

∫
ddp

(2πn)d
1

(p2 −∆+ iε2)2
, (24)

=
i

(4πn)2−ε

1

∆ε
Γ (ε) . (25)

Taking the limit ε → 0, we find (A = i
(4πn)2

)

A(1 + ε ln 4πn)(1− ε ln∆)

(
1

ε
− γE

)
(1 + ε lnµ2)

= A

(
1

ε
− ln

∆

µ2

)
(26)

where γE is the Euler-Mascheroni constant and µ
comes from keeping the the integral at same dimension
d4p → µ4−dddp. We redefined 1/ε → 1/ε−γE+ln 4πn.
Integrating back, we find

∆Γb ∝ − V T

64π2
n

(
c1 + c2m

2
eff +m4

eff ln
µ2

m2
eff

,

)
(27)

with ci integration constants, both divergent, agreeing
with the hard cutoff regularisation of [14]. We find
e.g. c1 = Am4

eff/2ε simply from the double integral
over 1/ε. In [14] they have the logarithmic divergence
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the other way around, because the cutoff is taken to
∞, while in dimensional regularisation, µ is arbitrary,
but often associated with some scale of the problem.

The divergences should be removable by renormal-
isation of λ,m,Λ by adding counterterms that we as-
sume are O(λ2

R), where the bare Λb = 0 is a constant
term of the Lagrangian. Then picking a subtraction
scheme, like modified minimal subtraction MS where
we choose a finite part of the divergence to exactly
cancel the −γE + ln 4πn terms, we can find the finite
effective potential. Instead we will pick a scheme that
is more relevant to our consideration of the potential.
First we state

Veff ≡ V (φb) + c1 + c2m
2 +

1

64π2
n

m4 ln

(
µ2

m2

)
. (28)

From the renormalisation, all bare quantities are re-
placed X → ZXXR = (1 + δX)XR. The question
of whether Z2 is a spontaneously broken symmetry
(SSB) is somewhat imprecise. We want to know
whether the physical degree of freedom πb undergoes
SSB owing to quantum corrections, but need to ex-
pand it around its minimum, which is why we used the
background field method. We define the classical mass
m = V ′′(0). We then define our renormalisation con-
ditions V ′′

eff|πb=0 = m2
R = 0 = ΛR = Veff(0). We will

not have use for renormalisation of the field strength
here, but it would typically be defined Zπ(0) = 1,
but could not be so here; It is afflicted by the same
problem of an IR divergence that we will have when
we try to set the standard condition for the coupling
λR = V (4)(0), that

lim
m→0

V (4) ∼ lim
m→0

ln
µ2

m2
→ ∞. (29)

We need instead to choose some arbitrary scale where
we define our renormalisation condition, where it is
fixed from an observation for example.

Writing explicitly the counterterms

Veff(π) ⊃ ΛR ZΛ +
1

2
m2

Rπ
2Zm +

λR

4!
π4Zλ (30)

Let’s write V
(4)

eff (πR) = λR for some scale πR. For
example for δm, δΛ, we find

V
(2)

eff (0) = c2λ+
m2

0λ

64π2
n

(
2 ln

(
µ2

m2
0

)
− 1

)
(31)

≡ −δmm2
R (32)

Veff(0) = c1 +
1

64π2
n

m4
0 ln

(
m2

0

µ2

)
≡ −δΛΛR. (33)

Doing similarly for our other conditions we find that
dependence on µ cancels, as it should, and that

Veff(πb) =
1

4
π4
b

{
λR +

3λR

32π2

[
ln

(
φ2

φ2
R

)
− 25/6

]}
.

(34)

Due to our renormalisation conditions this should
evaluate to a zero mass for the background field. If
it will continue to do so depends on whether the po-
tential is at a minimum. Similarly, we can conclude
about whether 〈πb〉, which should be at a minimum,
is 0. What we see is that although Veff → 0 as φ → 0,
because of the divergent logarithm in the bracket, Veff
will change sign in the neighbourhood of 0 due to the
quantum correction, and gives therefore a maximum
instead. Instead, a minimum can be found at

λR ln
〈φ〉
φ2
R

=
11

3
λR − 32

3
π2 ' 105. (35)

This was an interesting observation, but we see that
our perturbation analysis has broken down due to the
order of the logarithmic term, and we therefore need
to make a resummation of divergent loop integrals.
This is what Weinberg and Coleman did in their ap-
proach [15]. At 1-loop O(ξ2) order one can effectively
represent all interactions between the external back-
ground field and internal fluctuating field as a series
of diagrams with terms of n external pair interactions.
For n=1:

=

∫
d4p

(2π)4
1

2n

( 1
2λπ

2
b

k2 + iε

)n
∣∣∣∣∣
n=1

. (36)

The 1/2 factor is a symmetry factor for the vertex, we
can recognise the numerator from (17). The 1/2n fac-
tor is a symmetry factor of the whole diagram, count-
ing discrete symmetries of rotation and reflection. We
therefore exchange (21) with

i∆Γ = iV T

∫
d4p

(2π)4

∞∑
n=1

1

2n

( 1
2λπ

2
b

k2 + iε

)n

, (37)

which we recognise as a logarithm series for − ln(1−x)
for small x, so that we can resum

= −1

2
V T

∫
d4p

(2π)4
ln

(
1− λπ2

b/2

p2 + iε

)
, (38)

which is looking familiar, though slightly different,
now m2

eff → λπ2
b/2. Looking at (24), it is clear that πb

plays the role as an IR cutoff, such as in Pauli-Villars
regularisation.

The same renormalisation scheme then gives

δm = −c2λ/m
2
R, δΛ = −c1/ΛR (39)

δλ =
λR

64π2

[
25− 3 ln

(
2µ2

λπR

)]
, (40)

which inserted into the effective potential (28) (with
m2 → λπ2

b/2) gives the same type of behaviour as
our previous equation, meaning we need next-order
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loops. A way to resum higher orders is to use the RGE
equations. They let us use the fact that predictions
should be independent of the arbitrary scales where
the theory is defined. One can find the potential in
terms of the 4-point scattering amplitude, like

Veff(πb) = −π4
b

4!
M4(πb, πR). (41)

Since the S matrix is an observable, M4 should be in-
dependent of πR up to a phase. We can then find the
Callan-Symanzik equation for the 4-point function, re-
naming πR = µ,

µ
d

dµ
M4 = (42)(
µ∂µ + β

∂

∂λR
+ γm

∂

∂mR
+ 2γ

)
M4 = 0,

with β = µdλR/dµ the beta-function of the running
coupling, γm = (µ/mR)dmR/dµ the anomalous mass
dimension and γ = (µ/Zπ)dZπ/dµ is the anomalous
dimension of π. We put this solution beyond the scope
of this review. A more comprehensive account of the
metastability of the Higgs vacuum including the entire
standard model in 2-loop order and resummation to
3-loop, performed in [17], finds that a stable vacuum
requires mh > (129.4 ± 1.8)GeV, which means that
the observed Higgs at 125GeV indicates an unstable
vacuum, granted the standard model, to a significance
of 98% according to [17].

4 Discussion and Conclusion
The topics spanned in this review are loosely con-
nected around the topics of effective field theories
(both classical and quantum) and scalar fields and
their symmetry breaking. An outline of an interest-
ing frontier has been sketched, where both classical
and quantum dynamics maintain relevance at cos-
mological scales. Starting out with a general scalar
degree of freedom cosmological EFT, we specialised
to K-essence, an interesting candidate for inflation
and dark energy using non-linear kinetic terms in-
stead of a slow-roll potential, which we unfortunately
did not find time to study in detail. We then spe-
cialised to quintessence that does use a slow-roll po-
tential for its negative pressure behaviour. A spe-
cial case of quintessence could be the Higgs parti-
cle, although without beyond-standard model parti-
cle physics [17] finds that it is not favoured by the
data. Still, the intriguing possibility to have some
unknown effect to allow the Higgs to develop a neg-
ative pressure and drive the expansion of spacetime
instead of some entirely new undetected degree(s) of
freedom deserves a closer scrutiny. For example, [18]
argues that a non-minimal coupling with the Ricci

scalar ξ|H|2R could account for inflation by flatten-
ing the φ4 potential at Planck scales, giving condi-
tions for slow roll. However [17] notes loss of pertur-
bative unitarity at some scale Mpl/

√
ξ, which must

(but can [19]) be saved at the cost of minimality, and
the most favoured Higgs mass allowing for inflation
at sub-breakdown scales is disfavoured by the mass
of the top-quark at 2σ. The possibility of inflation
happening at the transition from a false vacuum to
the current has also been investigated [17], but mini-
mality is also here so far lost due to the difficulty in
exiting inflation. It would anyway be interesting if a
scalar particle and especially the Higgs through some
dynamic, maybe yet undiscovered mechanism specific
to cosmological or early universe environments could
develop novel phenomenology (e.g. non-linear kinetic
terms) and through them a natural causation for dark
energy/inflation. Such a bold statement should how-
ever be met with a thorough analysis, consideration of
observational constraints and a broad coverage of the
literature on the subject of which only a tiny fraction
has been covered here.
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