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We consider MSSM with RPC, limiting ourselves to describing a subset of the interactions of neutralinos
and charginos, without quarks and only one generation of fermions. After a short introduction to EFTs, we
look at a specific diagram and use it as an example as we construct a formalism for finding effective operators
parametrising the effects of heavy internal propagators, and which we can add to the Lagrangian with the
heavy field put to zero. We compare to the MSSM treatment.

1 Field Content

In SUSY, we generalise the Lagrangian density to a
density in superspace so that

S =

∫
d4x

∫
d4θL, L = Lkin −W,

where Lkin is the kinetic terms while W is the super-
potential. Even in MSSM, these terms are pretty ex-
tensive, and for simplicity, we’ll focus on interactions
amongst the electroweak gauginos and higgsinos, ex-
cluding much of the field content.

The reason why this is possible is through the com-
bined restrictions in interactions caused by demanding
colour- and R-parity conservation (RPC), where

R = (−1)2s+3B+L,

s, B, L ∼ spin, baryon number, lepton number,

and all SM particles have R = 1 while all super-
partners have R = −1, [1]. We’ll then only be able
to produce superpartners in pairs, and a superpart-
ner won’t be able to decay into only ‘normal’ parti-
cles. Quarks and gluons, squarks and gluinos, will
effectively be detached from these interactions, as you
can’t have colour charge production (You could have
several coloured particles produced whose net colour
is zero, but at low energies the production amplitudes
would be suppressed).

We’ll also assume a mass hierarchy so that, at low
energies, there can never be on-shell production of
heavy- from light degrees of freedom. This will fur-
ther restrict our considerations and motivate the EFT
treatment.

1.1 Neutralinos & Charginos
Both hadron and lepton colliders, if their energies are
high enough, might receive their cleanest signature
of SUSY from its extended fermion sector [2], which
therefore are of much interest to us. The only super-
symmetric fermions are the gauginos and the higgsi-
nos, which are the partners of gauge bosons and higgs
scalars respectively.

Especially interesting are the superpartners of the
electroweak sector gauge bosons – B̃0, W̃ 0 and W̃±.
Through EWSB, they mix with the higgsinos to form
eigth massive fermions, stated in their mass eigen-
states as:

χ̃0
i = Ni1B̃

0 +Ni2W̃
0 +Ni3H̃

0
d +Ni4H̃

0
u,

ψ̃±
j = n+j1W̃

+ + n+j2H̃
+
u + n−j3W̃

− + n−j4H̃
−
d ,

which for i ∈ 1, 2, 3, 4 and j ∈ 1, 2 give the neutralinos
and charginos respectively. Conventionally, these are
arranged so that the first element is the lightest one,
and then increasing mass with index.

In the limit where EWSB is a small effect, the
mass eigenstates would be roughly similar to the weak
eigenstates.

1.2 Interactions
We consider some interesting interactions found in
Haber & Kane [2] that satisfies our restrictions.

For concreteness and simplicity, we’ll assume the
lightest neutralino to be the LSP, and there to be some
unification scale where the gaugino masses and cou-
plings become unified. The remaining free parameters
of the theory translate to uncertainties of production
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rates and decay branching ratios, so we’ll for the pur-
poses of this paper, not knowing the dominating chan-
nels of the true theory, pick some specific diagrams,
from which our method will be made clear and extend-
able to other diagrams. Specifically, we find it inter-
esting to examine electron-positron reactions, seen as
this might be a starting point in lepton colliders, or a
possible subdiagram for hadron colliders. Our chosen
diagram is (from left to right):

ẽ

χ̃0
ie+

χ̃0
je− ,

with the following decay channels:

χ̃0
i

Z0

χ̃0
j

χ̃±
i

χ̃0
j

W±
.

We could specifically combine these to look at
e+e− → χ̃0

1, χ̃
0
1Z

0, χ̃0
1W

+W−, under the assumption
that mW ,mZ ,mχ̃0

1
� min(mχ̃0

2
,mẽ).

From lack of time/space, we’ll even further restrict
our focus to only consider direct LSP production from
the first diagram.

Of course, again, there are several other possibilities
that would contribute to the total cross section for
these reactions other than the ones constructed from
these subdiagrams.

2 MSSM Treatment
From Haber & Kane [2], we find the relevant interac-
tion terms in the Lagrangian (no sum):

Leeχ̃0
j
= −gēPRχ̃

0
j ẽLTj ,

+ gēPLχ̃
0
j ẽRN + h.c.,

Lχ̃∓
j χ̃0

iW
± = gW±

µ
¯̃χ0
i γ

µOijχ̃
∓
j ,

Tj = −[Nj2 +Nj1 tan θw]/
√
2,

N = −
√
2 tan θwN

∗
22, Oij = OL

ijPL +OR
ijPR,

where Oij is made up of a combination of the mix-
ing matrices of neutralinos and charginos and is given
explicitly in [2]. We’ll set ẽL = 0 and ẽR = ẽ for
simplicity.

From these we find for Feynman rules in momentum
space:

e−| e+

χ̃0
j

ẽ| ẽ∗

vertex
= −igPRN ∗|igPLN

W±
µ

χ̃±
j

χ̃0
i

vertex
= igγµOij ,

while the propagators and external leg contractions
look as usual.

With these rules, we find for the e+e− → χ̃0
1 pro-

duction (at minimal vertices):

1

4

∑
rstu

|M|2 =
1

4

(
g2|N |2

t−m2
ẽ

)2

×

Tr
{
PL(/k2 +mχ̃0

1
)PR(/p2 +me)

}
Tr

{
PL(/k1 −mχ̃0

1
)PR(/p1 −me)

}
=

1

4

(
g2|N |2

t− m̃2
ẽ

)2

(m2
e +m2

χ̃0
1
− t)2,

where we denoted fermion momenta p and neutralino
momenta k, electron-line 1 and positron line 2. As a
prediction for the effective theory amplitude, we may
simply set t = 0, because the selectron mass is much
larger.

3 Effective Field Theory
Imagine that you have some very complicated, UV-
complete theory and want to find a cross section for
some interaction. In some cases, realising that you’re
working at an energy scale where one or more of the
degrees of freedom effectively freezes out, their prop-
agators being suppressed by their masses squared and
energy not being available to produce them off-shell
from lighter degrees of freedom, might offer great sim-
plifications. At a lowest level, you might simply realise
that a 2-vertex interaction between light particle ex-
ternal states with an internal heavy degree of freedom
may be described as a single effective vertex contract-
ing with the same end states.

3.1 The Wilson Action
More rigorously, one can start out from the path in-
tegral for an n-point vacuum correlation function, ex-
pressed in terms of the generating functional that cou-
ples the fields to external currents, in the limit where
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the currents vanishes. Expressing Dφi[DψDψ̄]j =
DΦi and |Ω〉 ∼ the true vacuum (the coupling to ex-
ternal currents of the fermion fields requires some ex-
tra care from them being anticommuting Grassmann
numbers; We’ll notationally treat things as scalar
here):

〈Ω|Θ1 . . .ΘN |Ω〉 = exp{−iW [J ]}

×
∫

DΦi[Θ1 . . . ] exp

{
i

∫
d4x [L+ JiΦi]

}
,

where the functional exp{W} is equal to the integral
for N = 0. Then we’re able to express the scalar fields
as functional derivatives with regards to the external
currents, and once we’ve found the generating func-
tional and the propagator of the free-fields, we only
need to know the interaction Lagrangian in order to
find observables to any order.

Following Burgess [3] and Weinberg [4], one may
realise that W [J ] then generates the connected corre-
lations of the operators, while we might reexpress this
in terms of generators of connected 1-part-irreducible
(1PI) graphs by a Legendre transform to switch vari-
able from the external currents to expectations of the
fields under the external currents (were we leave the
field index implicit):

exp{iΓ[ΦJ ]} =

∫
DΦexp

{
i

∫
d4x [L(ΦJ +Φ) + JΦ]

}
.

Next, we can realise that we wont have external heavy
fields, so we drop their coupled currents from the on-
set. Finally, we recognise that we can split the path
integration into a light energy and heavy energy part
and get:

exp{iγ[ΦJ ]}

=

∫
[D]l.e. exp

{
i

∫
d4x[LW (ΦJ +Φl.e.) + JΦl.e.]

}
,

exp{iSW [ΦJ +Φl.e.]}

=

∫
[DΦ]h.e. exp {iS[ΦJ +Φl.e,Φh.e.]} .

This latter expression, solves for an effective action
that we call the Wilson action, to be inserted into the
generating functional γ. The Wilson action over 1
light particle irreducible (1LPI) graphs can be shown
to enter into the expression for Γ the same way as the
tradiational action; You can thus treat them as the
same, and it is therefore tempting to consider SM to
already be some Wilson action of a yet more funda-
mental, UV-complete unknown theory.

4 EFT Treatment
We assume that the generating functionals are com-
putable in a semiclassical loop expansion so that

γ = γt + γ1-loop + . . . , LW = Lt
W + L1-loop

W + . . .

where t-index indicates three level, meaning we evalu-
ate the classical action, traded the operators for their
expectations under the external currents.

4.1 Tree Level Effective Action
Starting out from the interaction terms given in sec-
tion 2 + free field Lagrangian terms, we can set out
to find the tree level approximation to the effective
action.

First we eliminate the heavy fields, expressing them
in terms of the light fields by their classical equations
of motion. For a field, the classical equations of mo-
tion are

∂L0

∂Φ
− ∂ν

∂L0

∂(∂νΦ)
=
∂VI
∂Φ

− ∂ν
∂VI

∂(∂νΦ)
,

where you also get an equation in Φ̄. Giving here for
the heavy dofs:

�ẽ = m2ẽ− gN ∗

2
¯̃χ0
jPRe,

�ẽ∗ = m2ẽ∗ +
gN
2
ēPLχ̃

0
j ,

i/∂χ̃0
j = mχj χ̃

0
j + gPReẽ

∗N ∗,

− i∂µ ¯̃χ
0
jγ

µ = mχj
¯̃χ0
i + gēPLēN .

This is getting a bit much, so we put χ̃± = χ̃0
i>1 = 0.

Inverting the equations of motion for the selectron:

ẽ(e, χ̃) = −(�−M2
ẽ )

−1(gN ∗ ¯̃χ0
iPRe)

= −
∫
d4y

gN ∗

2
¯̃χ0
1PRe

∫
d4p

(2π)4
i

p2 −M2
ẽ

e−ip(x−y)

'
∫
d4y

gN ∗

2
¯̃χ0
1PRe δ

(4)(x− y)/M2
ẽ

=
gN ∗

2M2
ẽ

¯̃χ0
1PRe,

ẽ∗(e, χ̃) = · · · = − gN
2M2

ẽ

ēPLχ̃
0
1.

We can find next orders by noting (non-trivially) that
you may do a Taylor in the free propagator:

(�−M2)−1 = − 1

M2
+

�
M4

+ . . . ,

Going back to the action, inserting these equations,
we find:

(1)Lt,I
W = −g|N ēPLχ̃

0
1|2/M2

ẽ ,

(2)Lt,I
W = −g2|N∂µ(ēPLχ̃

0
1)|2/M4

ẽ

which is what we were looking for – an effective 4-
vertex, hiding away the internal heavy selectron prop-
agator. We also note that in the limit where Mẽ → ∞,
this interaction shuts down completely.
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4.2 Amplitude
It is then straightforward to find the lowest order am-
plitude; We see:

e+ χ̃0
1

χ̃0
1e−

vertex
= −ig2|N |2PLPR/M

2
ẽ ,

where the projection operators have to be placed in
between the correct external leg contractions, as seen
from the effective term (PL on the positron line).

Finding the amplitude:

1

4

∑
rstu

|M|2 =
1

4

(
g|N |
Mẽ

)4

Tr{PL(/k1 −mχ)PR(/p1 −me)}

× Tr{PL(/k2 +mχ)PR(/p2 +me)},

which we already now see agrees with the MSSM cal-
culation above for t = 0.

We note that 2 of these 4-vertices put together can
give an e+e− → e+e− scattering. We can treat then
the LSP as heavy compared to the electron and inte-
grate it out, finding an effective term to be added to
the SM Lagrangian.

5 Conclusion
We have reviewed a framework for exploiting energy
scale hierarchies in Lagrangians by constructing effec-
tive Lagrangians from integrating out the heavy de-
grees of freedom, parametrising their effect in terms
of new effective terms.

We showed explicitly how to perform this procedure
at lowest order in both couplings and mass for an ex-
ample reaction.

Several simplifying measures have been made,
among others: Only considering lowest level, disre-
garding diagrams contributing to the same reaction
but with other internal propagators that may also be
treated as independent heavy or light degrees of free-
dom, heavy external states and subsequent decay have
been disregarded, and only one of the 2 selectrons have
been taken into account, although we expect the other
term to easily be included in the analysis by similar
method; Our main emphasis has been the formalism.

An interesting step forward would be to consider
higher order terms (in 1/M2), and also 1-loop order,
where one can consider the effect of the heavy fields
on RG flows of coupling constants and masses of the
light fields.

Also it would be nice to see a complete MSSM ef-
fective Lagrangian, leaving maybe only the LSP as
a light sparticle, integrating out the rest, finding the
first correction to SM.

We leave it all as an exercise to the interested
reader!
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