The Christoffel symbols of perturbed FLRW spacetimes


It can be surprisingly difficult to find essential geometrical quantities you need to make calculations in some space times. They are easily available for the flat FLRW in for example (Dodelson 2003), but I have at least struggled finding them for the fully perturbed FLRW, especially when using fully conformal coordinates. One option is to use for example the xAct package of Mathematica, but here instead, I will present some analytically derived results that have been verified against a Christoffel solver I made in sympy. The cosmic time coordinate calculation is made entirely in sympy. I will be using the Poisson gauge, which reduces to the Newtonian gauge in the weak-field limit. The space-time interval is stated in conformal coordinates

$$ \rm d s^2 = a(\tau)^2\Big[ -e^{2\Psi (\tau, \vec x)}\rm d \tau^2 - 2 B_i(\tau, \vec x) \rm d x^i \rm d \tau + (e^{-2\Phi (\tau, \vec x)}\delta_{ij} + h_{ij}(\tau, \vec x))\rm d x^i \rm d x^j \Big], $$

from which we can find the metric. The connection does not need be defined in terms of the metric; it can instead be treated as an independent object as in the Palatini formalism. The most general connection describes a manifold that has curvature, torsion, and non-metricity, the latter of which relates to whether or not the covariant derivative that the connection forms commutes with the metric. If we require it to do so and also to have zero torsion, that fixes a unique connection in terms of the metric, known as the Christoffel symbol

$$ \Gamma_{\mu\nu}^{\rho} = \frac{1}{2}g^{\rho\lambda} \left( g_{\lambda\mu,\nu}+g_{\lambda\nu,\mu}-g_{\mu\nu,\lambda} \right). $$

When one is finding the divergence of a vector-field, one will require the self-contraction of the connection, so we will find this specifically below, in addition to the complete symbols. All symbols not shown are implicitply zero, and I have only done the expansions to first order in the metric potentials, following the linearisation scheme of (Adamek 2016).

Conformal time coordinates

Using conformal time, \(\rm d\eta=\rm d t/a\), and space, \(\vec x = \vec x_p/a \), we find the Christoffel symbols

$$ \begin{eqnarray} \Gamma^\alpha_{0\alpha} &=& \frac{1}{2}g^{\lambda\alpha}g_{\lambda\alpha,0} = \partial_0 \left( \Psi-3\Phi+\frac{1}{2}h\right)+4\mathcal{H}, \\ \Gamma^\alpha_{i\alpha} &=& \frac{1}{2}g^{\lambda\alpha}g_{\lambda\alpha,i} =\partial_i \left( \Psi-3\Phi+\frac{1}{2}h\right),\\ \Gamma^0_{ij} &=& \mathcal{H}\left( 1 - 2 \Psi - 2 \Psi - \dot\Phi/\mathcal{H} \right)\delta_{ij} + \mathcal{H}h_{ij} + \dot h_{ij}/2 + \partial_{(i}B_{j)}, \\\Gamma^{\mu}_{00} &=& \mathcal{H}\delta_t^{\mu}+\partial_\mu\Psi-\delta^{\mu i}(B_i\mathcal{H}+\dot B_i), \\\Gamma^{i}_{j0} &=& \delta_{ij}\left( \mathcal{H}-\dot\Phi \right)+\dot{h}_{ij}/2 + \partial_{[i}B_{j]}, \\\Gamma^{i}_{jk} &=& \partial_{(j}h_{k)i}-\frac{1}{2}\partial_i h_{jk} +\left(\partial_i\Phi + B_i \mathcal{H}\right) \delta_{jk} - 2\delta_{i(j} \partial_{k)}\Phi, \end{eqnarray} $$

the latter of which I found using sympy and compactified according to appararent index-dependencies of the terms. To find this result, I derived the inverse of the metric using the cofactor expansion and Cramer's rule

$$ \begin{eqnarray} \sqrt{-g} &=& a^4\left( 1+\Psi-3\Phi+h/2 \right) \\ g_{\mu\nu} &=& a^{2} \begin{pmatrix} \quad-e^{2\Psi} & -B_i \\ -B_i & \delta_{ij}e^{-2\Phi} +h_{ij} \end{pmatrix},\\ g^{\mu\nu} &=& a^{-2} \begin{pmatrix} \quad-e^{-2\Psi} & -B_i \\ -B_i & \delta_{ij}e^{2\Phi} -h_{ij} \end{pmatrix}, \end{eqnarray} $$

Cosmic time coordinates

In the case of using the cosmic time coordinate \(\rm d t=a \rm d \eta \), we find the symbols

$$ \begin{eqnarray} \Gamma^\alpha_{0\alpha} &=& \\ \Gamma^\alpha_{i\alpha} &=& \\ \Gamma^0_{ij} &=& \ a \partial_{(i}B_{j)} + a \mathcal{H}\left( \left[1-2\Psi-2\Phi\right]\delta_{ij}+h_{ij} \right)+a^2\left(-\dot\Phi\delta_{ij}+\dot h_{ij}/2\right), \\ \Gamma^i_{j0} &=& \\ \Gamma^0_{i0} &=& \\ \Gamma^{\mu}_{00} &=& \end{eqnarray} $$

Where I have left some of the symbols blank as an exercise for the reader (they might be filled in later...). For finding this result, I have made use of the quantities

$$ \begin{eqnarray} g &=& g_{\rm{conformal}} \\ g_{\mu\nu} &=& \begin{pmatrix} \quad- e^{2\Psi} & -a B_i \\ -a B_i & a^2\left( \delta_{ij}e^{-2\Phi} +h_{ij} \right) \end{pmatrix},\\ g^{\mu\nu} &=& \begin{pmatrix} \quad - e^{-2\Psi} & -a^{-1} B_i \\ - a^{-1}B_i & a^{-2}\left( \delta_{ij}e^{2\Phi} -h_{ij}\right) \end{pmatrix}, \end{eqnarray} $$

Flat space

In flat space, where all of the perturbations are zero the expressions reduce to the familar $$ \begin{eqnarray} \Gamma^0_{ij} &=& a \mathcal H \delta_{ij}, \\\Gamma^i_{j0} &=& H \delta_{ij}. \end{eqnarray} $$